

Data Quality – Impact on Pipeline Integrity Management

GeoFields, Inc.

October 16, 2001

Rationale (and Disclaimer)

- Too many projects go south due to data issues
 - "Silver bullet solutions" won't make data issues go away
- Presentation based on experience not academic
- Some interaction with Pipeline industry members not exhaustive
- All points open to criticism

Components of Pipeline Integrity Management

Integrity

Category	Context	Integrity Scale
Corporate	Commitment	Token Best Practice
Personnel	Capability	Inexperienced Competent
Methods & Models	Confidence	"Black Box" Understood
Data	Quality	Unknown Excellent
Pipeline	Operational	Liability Asset

Data Quality

- Quality "A degree or grade of excellence"
- Directly impacts the "value" of derived information
- Data quality is impacted by:
 - Data Accuracy
 - Data Completeness / Timeliness
 - Data Organization / Usability
 - Data Error

Data Accuracy

- Accuracy refers to data that are the result of measurement
 - Instrument limitations, limitation of recording media, limitation of recording method
- Pipeline data set accuracy will generally be affected by:
 - Spatial (geographic) accuracy
 - GPS Survey, Basemap (USGS, Aerial photography, satellite imagery, etc.)
 - Linear (stationing) accuracy
 - Linear surveys (CIS, DOC, etc.), ILI, Centerline stationing
 - Real Time measurement (SCADA)
- Data accuracy can be measured and controlled
 - Control Points and Instrument Calibration

Data Completeness / Timeliness

- Data set may not exhibit error however
 - If the data set is not complete, it does not accurately represent the entire state of the facility
 - If the data set is not timely, it does not accurately represent the current state of the facility
- Decisions based on less than appropriate completeness & timeliness of data may result in less than judicious action
 - "Appropriate" provides the latitude for phased and periodic data collection

Data Organization / Usability

- Pipeline integrity management & risk modeling utilizes significant volumes of data
 - Number of data set types, Number of pipelines
 - Raw data sets, derived data sets, etc.
- If data is not systematically organized and managed the result is:

CHAOS !!

• Pipeline Integrity Management based on chaotic data structures is not defensible

Data Error

- Includes primarily "bad" data
 - Error that is unrecoverable but recognizable
 - Error that is undetected (valid but wrong values)
- Includes aspects of data accuracy

Types of Data Error

- Legacy Data Error
 - Data from source such as Alignment Sheets that is in error
- Transcription Error
 - Typing mistakes
- Context Error
 - "Meta data" for data acquisition or conversion recorded incorrectly or not recorded
- Specification Error
 - Data specification for acquisition or conversion not followed, or non existent

Types of Data Error

• Quantified Error

Data source specifies accuracy (USGS Quad - +/- 40 foot, etc.)

• Unquantified Error

- Data source is known to have error, but error is unquantified

Centerline Station Control Error

- Pipe centerline has widely dispersed or poorly defined station control features (road crossings, section line crossings, etc.)
- Station control features may have quantified error

Types of Data Error

- Linear "Alignment" Error
 - Data set has widely dispersed or poorly defined linear control features
 - Distance between control features on data set is significantly different from distance on centerline – how should difference be distributed?
- Derived Data Error
 - Data sets that are the result with more than one data set as input
 - HCA Impact Segment is result of intersection of CL with HCA Area (possibly buffered)
 - CL position Quantified Error; HCA Area Unquantified error
 - Error of all input data sets must be considered when determining error of derived data sets

Simple Risk Model – Weighted Summation

Handling of Data Error Weighted Summation

- Weighted summation is a weighted linear overlay
 - Each data set is a set of points or linear segments representing a characteristic over a section of the centerline
 - Point & linear characteristics form a weighted "stack"
 - Resulting segments from "merging the stack" carry all input characteristics
 - Resulting segment length is the "lowest common denominator" of all input segments (including points)

Handling of Data Error Weighted Summation

- Error is integrated by "extending" data set elements by the known inaccuracy
 - Example
 - 100 foot segment with linear accuracy of +/- 40 feet
 - 40 feet added to each end of the segment
 - Becomes a 180 foot linear segment
 - Example
 - Point "event" with linear accuracy of +/- 40 feet
 - 40 feet added to each side of point
 - Becomes an 80 foot linear segment
- Linear overlay is performed using "error extended" data elements

Data Classification

• Thresholding of Data

 "Continuous" data - CP Potential readings, Pit depth, etc. must be set to discreet values (1-10, Good, Medium, Poor) in order to "feed" the Risk Model

• Qualitative to Quantitative Transform

- Data such as "coating type" must be transformed from qualitative information (asphalt, FBE, PE) to a numeric value
- Matrix Classification
 - Two or more variables may be incorporated into the classification process

Managing Data Quality

- Rule #1 Your data is likely in worse shape than you thought it was
- Understand integrity management objectives
 - Regulatory satisfaction or "Dig here"
- Understand integrity data requirements thoroughly
 - Fundamental data sets, optional data sets (fine tuning)
- Each data set should be documented
 - Data Source
 - Accuracy / Control
 - Error Issues
 - Processing Methods
 - Data structure requirements
- Remember computational result reflects the worst error from input data sets